3.7.54 \(\int \frac {(d f+e f x)^4}{(a+b (d+e x)^2+c (d+e x)^4)^3} \, dx\) [654]

3.7.54.1 Optimal result
3.7.54.2 Mathematica [A] (verified)
3.7.54.3 Rubi [A] (verified)
3.7.54.4 Maple [C] (verified)
3.7.54.5 Fricas [B] (verification not implemented)
3.7.54.6 Sympy [F(-1)]
3.7.54.7 Maxima [F]
3.7.54.8 Giac [B] (verification not implemented)
3.7.54.9 Mupad [B] (verification not implemented)

3.7.54.1 Optimal result

Integrand size = 33, antiderivative size = 353 \[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\frac {f^4 (d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac {f^4 (d+e x) \left (7 b^2-4 a c+12 b c (d+e x)^2\right )}{8 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac {3 \sqrt {c} \left (3 b^2+4 a c-2 b \sqrt {b^2-4 a c}\right ) f^4 \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{4 \sqrt {2} \left (b^2-4 a c\right )^{5/2} \sqrt {b-\sqrt {b^2-4 a c}} e}-\frac {3 \sqrt {c} \left (3 b^2+4 a c+2 b \sqrt {b^2-4 a c}\right ) f^4 \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{4 \sqrt {2} \left (b^2-4 a c\right )^{5/2} \sqrt {b+\sqrt {b^2-4 a c}} e} \]

output
1/4*f^4*(e*x+d)*(2*a+b*(e*x+d)^2)/(-4*a*c+b^2)/e/(a+b*(e*x+d)^2+c*(e*x+d)^ 
4)^2-1/8*f^4*(e*x+d)*(7*b^2-4*a*c+12*b*c*(e*x+d)^2)/(-4*a*c+b^2)^2/e/(a+b* 
(e*x+d)^2+c*(e*x+d)^4)+3/8*f^4*arctan((e*x+d)*2^(1/2)*c^(1/2)/(b-(-4*a*c+b 
^2)^(1/2))^(1/2))*c^(1/2)*(3*b^2+4*a*c-2*b*(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2 
)^(5/2)/e*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-3/8*f^4*arctan((e*x+d)*2^(1 
/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*(3*b^2+4*a*c+2*b*(-4*a*c 
+b^2)^(1/2))/(-4*a*c+b^2)^(5/2)/e*2^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
 
3.7.54.2 Mathematica [A] (verified)

Time = 2.61 (sec) , antiderivative size = 331, normalized size of antiderivative = 0.94 \[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\frac {f^4 \left (-\frac {2 \left (-2 a (d+e x)-b (d+e x)^3\right )}{\left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac {(d+e x) \left (-7 b^2+4 a c-12 b c (d+e x)^2\right )}{\left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac {3 \sqrt {2} \sqrt {c} \left (3 b^2+4 a c-2 b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {3 \sqrt {2} \sqrt {c} \left (3 b^2+4 a c+2 b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt {b+\sqrt {b^2-4 a c}}}\right )}{8 e} \]

input
Integrate[(d*f + e*f*x)^4/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]
 
output
(f^4*((-2*(-2*a*(d + e*x) - b*(d + e*x)^3))/((b^2 - 4*a*c)*(a + b*(d + e*x 
)^2 + c*(d + e*x)^4)^2) + ((d + e*x)*(-7*b^2 + 4*a*c - 12*b*c*(d + e*x)^2) 
)/((b^2 - 4*a*c)^2*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + (3*Sqrt[2]*Sqrt[ 
c]*(3*b^2 + 4*a*c - 2*b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e* 
x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 
 4*a*c]]) - (3*Sqrt[2]*Sqrt[c]*(3*b^2 + 4*a*c + 2*b*Sqrt[b^2 - 4*a*c])*Arc 
Tan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a* 
c)^(5/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])))/(8*e)
 
3.7.54.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 343, normalized size of antiderivative = 0.97, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {1462, 1440, 1492, 27, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx\)

\(\Big \downarrow \) 1462

\(\displaystyle \frac {f^4 \int \frac {(d+e x)^4}{\left (c (d+e x)^4+b (d+e x)^2+a\right )^3}d(d+e x)}{e}\)

\(\Big \downarrow \) 1440

\(\displaystyle \frac {f^4 \left (\frac {(d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac {\int \frac {2 a-5 b (d+e x)^2}{\left (c (d+e x)^4+b (d+e x)^2+a\right )^2}d(d+e x)}{4 \left (b^2-4 a c\right )}\right )}{e}\)

\(\Big \downarrow \) 1492

\(\displaystyle \frac {f^4 \left (\frac {(d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac {\frac {(d+e x) \left (-4 a c+7 b^2+12 b c (d+e x)^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {\int \frac {3 a \left (b^2-4 c (d+e x)^2 b+4 a c\right )}{c (d+e x)^4+b (d+e x)^2+a}d(d+e x)}{2 a \left (b^2-4 a c\right )}}{4 \left (b^2-4 a c\right )}\right )}{e}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {f^4 \left (\frac {(d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac {\frac {(d+e x) \left (-4 a c+7 b^2+12 b c (d+e x)^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {3 \int \frac {b^2-4 c (d+e x)^2 b+4 a c}{c (d+e x)^4+b (d+e x)^2+a}d(d+e x)}{2 \left (b^2-4 a c\right )}}{4 \left (b^2-4 a c\right )}\right )}{e}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {f^4 \left (\frac {(d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac {\frac {(d+e x) \left (-4 a c+7 b^2+12 b c (d+e x)^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {3 \left (-c \left (2 b-\frac {4 a c+3 b^2}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c (d+e x)^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}d(d+e x)-c \left (\frac {4 a c+3 b^2}{\sqrt {b^2-4 a c}}+2 b\right ) \int \frac {1}{c (d+e x)^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}d(d+e x)\right )}{2 \left (b^2-4 a c\right )}}{4 \left (b^2-4 a c\right )}\right )}{e}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {f^4 \left (\frac {(d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac {\frac {(d+e x) \left (-4 a c+7 b^2+12 b c (d+e x)^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {3 \left (-\frac {\sqrt {2} \sqrt {c} \left (2 b-\frac {4 a c+3 b^2}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \left (\frac {4 a c+3 b^2}{\sqrt {b^2-4 a c}}+2 b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{2 \left (b^2-4 a c\right )}}{4 \left (b^2-4 a c\right )}\right )}{e}\)

input
Int[(d*f + e*f*x)^4/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]
 
output
(f^4*(((d + e*x)*(2*a + b*(d + e*x)^2))/(4*(b^2 - 4*a*c)*(a + b*(d + e*x)^ 
2 + c*(d + e*x)^4)^2) - (((d + e*x)*(7*b^2 - 4*a*c + 12*b*c*(d + e*x)^2))/ 
(2*(b^2 - 4*a*c)*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) - (3*(-((Sqrt[2]*Sqr 
t[c]*(2*b - (3*b^2 + 4*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d 
+ e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt 
[2]*Sqrt[c]*(2*b + (3*b^2 + 4*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt 
[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/Sqrt[b + Sqrt[b^2 - 4*a*c]])) 
/(2*(b^2 - 4*a*c)))/(4*(b^2 - 4*a*c))))/e
 

3.7.54.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1440
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[(-d^3)*(d*x)^(m - 3)*(2*a + b*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2* 
(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^4/(2*(p + 1)*(b^2 - 4*a*c))   Int[(d*x 
)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), 
x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && Gt 
Q[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1462
Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Si 
mp[u^m/(Coefficient[v, x, 1]*v^m)   Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p 
, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1492
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + 
 c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 
 - 4*a*c))   Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 
7)*(d*b - 2*a*e)*c*x^2, x]*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 LtQ[p, -1] && IntegerQ[2*p]
 
3.7.54.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.69 (sec) , antiderivative size = 708, normalized size of antiderivative = 2.01

method result size
default \(f^{4} \left (\frac {-\frac {3 c^{2} e^{6} b \,x^{7}}{2 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {21 c^{2} d \,e^{5} b \,x^{6}}{2 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {\left (-252 b c \,d^{2}+4 a c -19 b^{2}\right ) c \,e^{4} x^{5}}{128 a^{2} c^{2}-64 a \,b^{2} c +8 b^{4}}+\frac {5 c d \,e^{3} \left (-84 b c \,d^{2}+4 a c -19 b^{2}\right ) x^{4}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {e^{2} \left (420 b \,c^{2} d^{4}-40 a \,c^{2} d^{2}+190 b^{2} c \,d^{2}+16 a b c +5 b^{3}\right ) x^{3}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {d e \left (252 b \,c^{2} d^{4}-40 a \,c^{2} d^{2}+190 b^{2} c \,d^{2}+48 a b c +15 b^{3}\right ) x^{2}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {\left (84 b \,c^{2} d^{6}-20 a \,c^{2} d^{4}+95 b^{2} c \,d^{4}+48 b \,d^{2} c a +15 b^{3} d^{2}+12 c \,a^{2}+3 b^{2} a \right ) x}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {d \left (12 b \,c^{2} d^{6}-4 a \,c^{2} d^{4}+19 b^{2} c \,d^{4}+16 b \,d^{2} c a +5 b^{3} d^{2}+12 c \,a^{2}+3 b^{2} a \right )}{8 e \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}}{\left (c \,x^{4} e^{4}+4 c d \,e^{3} x^{3}+6 c \,d^{2} e^{2} x^{2}+4 c \,d^{3} e x +b \,e^{2} x^{2}+d^{4} c +2 b d e x +b \,d^{2}+a \right )^{2}}+\frac {3 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,e^{4} \textit {\_Z}^{4}+4 c d \,e^{3} \textit {\_Z}^{3}+\left (6 c \,d^{2} e^{2}+b \,e^{2}\right ) \textit {\_Z}^{2}+\left (4 d^{3} e c +2 b d e \right ) \textit {\_Z} +d^{4} c +b \,d^{2}+a \right )}{\sum }\frac {\left (-4 \textit {\_R}^{2} b c \,e^{2}-8 \textit {\_R} b c d e -4 b c \,d^{2}+4 a c +b^{2}\right ) \ln \left (x -\textit {\_R} \right )}{2 e^{3} c \,\textit {\_R}^{3}+6 c d \,e^{2} \textit {\_R}^{2}+6 c \,d^{2} e \textit {\_R} +2 d^{3} c +b e \textit {\_R} +b d}\right )}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) e}\right )\) \(708\)
risch \(\frac {-\frac {3 c^{2} e^{6} b \,f^{4} x^{7}}{2 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {21 c^{2} d \,e^{5} b \,f^{4} x^{6}}{2 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {\left (-252 b c \,d^{2}+4 a c -19 b^{2}\right ) c \,e^{4} f^{4} x^{5}}{128 a^{2} c^{2}-64 a \,b^{2} c +8 b^{4}}+\frac {5 c d \,e^{3} f^{4} \left (-84 b c \,d^{2}+4 a c -19 b^{2}\right ) x^{4}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {e^{2} f^{4} \left (420 b \,c^{2} d^{4}-40 a \,c^{2} d^{2}+190 b^{2} c \,d^{2}+16 a b c +5 b^{3}\right ) x^{3}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {d e \,f^{4} \left (252 b \,c^{2} d^{4}-40 a \,c^{2} d^{2}+190 b^{2} c \,d^{2}+48 a b c +15 b^{3}\right ) x^{2}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {f^{4} \left (84 b \,c^{2} d^{6}-20 a \,c^{2} d^{4}+95 b^{2} c \,d^{4}+48 b \,d^{2} c a +15 b^{3} d^{2}+12 c \,a^{2}+3 b^{2} a \right ) x}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {d \,f^{4} \left (12 b \,c^{2} d^{6}-4 a \,c^{2} d^{4}+19 b^{2} c \,d^{4}+16 b \,d^{2} c a +5 b^{3} d^{2}+12 c \,a^{2}+3 b^{2} a \right )}{8 e \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}}{\left (c \,x^{4} e^{4}+4 c d \,e^{3} x^{3}+6 c \,d^{2} e^{2} x^{2}+4 c \,d^{3} e x +b \,e^{2} x^{2}+d^{4} c +2 b d e x +b \,d^{2}+a \right )^{2}}+\frac {3 f^{4} \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,e^{4} \textit {\_Z}^{4}+4 c d \,e^{3} \textit {\_Z}^{3}+\left (6 c \,d^{2} e^{2}+b \,e^{2}\right ) \textit {\_Z}^{2}+\left (4 d^{3} e c +2 b d e \right ) \textit {\_Z} +d^{4} c +b \,d^{2}+a \right )}{\sum }\frac {\left (-\frac {4 b c \,e^{2} \textit {\_R}^{2}}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}-\frac {8 d b c e \textit {\_R}}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}+\frac {-4 b c \,d^{2}+4 a c +b^{2}}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}\right ) \ln \left (x -\textit {\_R} \right )}{2 e^{3} c \,\textit {\_R}^{3}+6 c d \,e^{2} \textit {\_R}^{2}+6 c \,d^{2} e \textit {\_R} +2 d^{3} c +b e \textit {\_R} +b d}\right )}{16 e}\) \(775\)

input
int((e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x,method=_RETURNVERBOSE)
 
output
f^4*((-3/2*c^2*e^6*b/(16*a^2*c^2-8*a*b^2*c+b^4)*x^7-21/2*c^2*d*e^5*b/(16*a 
^2*c^2-8*a*b^2*c+b^4)*x^6+1/8*(-252*b*c*d^2+4*a*c-19*b^2)*c*e^4/(16*a^2*c^ 
2-8*a*b^2*c+b^4)*x^5+5/8*c*d*e^3*(-84*b*c*d^2+4*a*c-19*b^2)/(16*a^2*c^2-8* 
a*b^2*c+b^4)*x^4-1/8*e^2*(420*b*c^2*d^4-40*a*c^2*d^2+190*b^2*c*d^2+16*a*b* 
c+5*b^3)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3-1/8*d*e*(252*b*c^2*d^4-40*a*c^2*d^ 
2+190*b^2*c*d^2+48*a*b*c+15*b^3)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2-1/8*(84*b* 
c^2*d^6-20*a*c^2*d^4+95*b^2*c*d^4+48*a*b*c*d^2+15*b^3*d^2+12*a^2*c+3*a*b^2 
)/(16*a^2*c^2-8*a*b^2*c+b^4)*x-1/8*d/e*(12*b*c^2*d^6-4*a*c^2*d^4+19*b^2*c* 
d^4+16*a*b*c*d^2+5*b^3*d^2+12*a^2*c+3*a*b^2)/(16*a^2*c^2-8*a*b^2*c+b^4))/( 
c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d* 
e*x+b*d^2+a)^2+3/16/(16*a^2*c^2-8*a*b^2*c+b^4)/e*sum((-4*_R^2*b*c*e^2-8*_R 
*b*c*d*e-4*b*c*d^2+4*a*c+b^2)/(2*_R^3*c*e^3+6*_R^2*c*d*e^2+6*_R*c*d^2*e+2* 
c*d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*e^3*_Z^3+(6*c*d^2*e^ 
2+b*e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+d^4*c+b*d^2+a)))
 
3.7.54.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 6770 vs. \(2 (305) = 610\).

Time = 0.46 (sec) , antiderivative size = 6770, normalized size of antiderivative = 19.18 \[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Too large to display} \]

input
integrate((e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="fricas 
")
 
output
Too large to include
 
3.7.54.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Timed out} \]

input
integrate((e*f*x+d*f)**4/(a+b*(e*x+d)**2+c*(e*x+d)**4)**3,x)
 
output
Timed out
 
3.7.54.7 Maxima [F]

\[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\int { \frac {{\left (e f x + d f\right )}^{4}}{{\left ({\left (e x + d\right )}^{4} c + {\left (e x + d\right )}^{2} b + a\right )}^{3}} \,d x } \]

input
integrate((e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="maxima 
")
 
output
-3/8*f^4*integrate((4*b*c*e^2*x^2 + 8*b*c*d*e*x + 4*b*c*d^2 - b^2 - 4*a*c) 
/(c*e^4*x^4 + 4*c*d*e^3*x^3 + c*d^4 + (6*c*d^2 + b)*e^2*x^2 + b*d^2 + 2*(2 
*c*d^3 + b*d)*e*x + a), x)/(b^4 - 8*a*b^2*c + 16*a^2*c^2) - 1/8*(12*b*c^2* 
e^7*f^4*x^7 + 84*b*c^2*d*e^6*f^4*x^6 + (252*b*c^2*d^2 + 19*b^2*c - 4*a*c^2 
)*e^5*f^4*x^5 + 5*(84*b*c^2*d^3 + (19*b^2*c - 4*a*c^2)*d)*e^4*f^4*x^4 + (4 
20*b*c^2*d^4 + 5*b^3 + 16*a*b*c + 10*(19*b^2*c - 4*a*c^2)*d^2)*e^3*f^4*x^3 
 + (252*b*c^2*d^5 + 10*(19*b^2*c - 4*a*c^2)*d^3 + 3*(5*b^3 + 16*a*b*c)*d)* 
e^2*f^4*x^2 + (84*b*c^2*d^6 + 5*(19*b^2*c - 4*a*c^2)*d^4 + 3*a*b^2 + 12*a^ 
2*c + 3*(5*b^3 + 16*a*b*c)*d^2)*e*f^4*x + (12*b*c^2*d^7 + (19*b^2*c - 4*a* 
c^2)*d^5 + (5*b^3 + 16*a*b*c)*d^3 + 3*(a*b^2 + 4*a^2*c)*d)*f^4)/((b^4*c^2 
- 8*a*b^2*c^3 + 16*a^2*c^4)*e^9*x^8 + 8*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^ 
4)*d*e^8*x^7 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3 + 14*(b^4*c^2 - 8*a*b 
^2*c^3 + 16*a^2*c^4)*d^2)*e^7*x^6 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2* 
c^4)*d^3 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d)*e^6*x^5 + (b^6 - 6*a* 
b^4*c + 32*a^3*c^3 + 70*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^4 + 30*(b^5 
*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^2)*e^5*x^4 + 4*(14*(b^4*c^2 - 8*a*b^2*c 
^3 + 16*a^2*c^4)*d^5 + 10*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^3 + (b^6 
- 6*a*b^4*c + 32*a^3*c^3)*d)*e^4*x^3 + 2*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a 
^2*c^4)*d^6 + a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b^3*c^2 
 + 16*a^2*b*c^3)*d^4 + 3*(b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^2)*e^3*x^2 + ...
 
3.7.54.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1958 vs. \(2 (305) = 610\).

Time = 0.33 (sec) , antiderivative size = 1958, normalized size of antiderivative = 5.55 \[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Too large to display} \]

input
integrate((e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="giac")
 
output
3/16*((4*b*c*e^2*f^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e 
^4)) + d/e)^2 - 8*b*c*d*e*f^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)* 
e^2)/(c*e^4)) + d/e) + 4*b*c*d^2*f^4 - b^2*f^4 - 4*a*c*f^4)*log(x + sqrt(1 
/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)/(2*c*e^4*(sqrt(1 
/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)^3 - 6*c*d*e^3*(s 
qrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)^2 - 2*c*d^3 
*e - b*d*e + (6*c*d^2*e^2 + b*e^2)*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4* 
a*c)*e^2)/(c*e^4)) + d/e)) - (4*b*c*e^2*f^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt 
(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)^2 + 8*b*c*d*e*f^4*(sqrt(1/2)*sqrt(-(b*e 
^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e) + 4*b*c*d^2*f^4 - b^2*f^4 - 4* 
a*c*f^4)*log(x - sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) 
+ d/e)/(2*c*e^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) 
- d/e)^3 + 6*c*d*e^3*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e 
^4)) - d/e)^2 + 2*c*d^3*e + b*d*e + (6*c*d^2*e^2 + b*e^2)*(sqrt(1/2)*sqrt( 
-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)) + (4*b*c*e^2*f^4*(sqrt(1 
/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)^2 - 8*b*c*d*e*f^ 
4*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e) + 4*b*c 
*d^2*f^4 - b^2*f^4 - 4*a*c*f^4)*log(x + sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 
- 4*a*c)*e^2)/(c*e^4)) + d/e)/(2*c*e^4*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 
- 4*a*c)*e^2)/(c*e^4)) + d/e)^3 - 6*c*d*e^3*(sqrt(1/2)*sqrt(-(b*e^2 - s...
 
3.7.54.9 Mupad [B] (verification not implemented)

Time = 12.21 (sec) , antiderivative size = 13840, normalized size of antiderivative = 39.21 \[ \int \frac {(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Too large to display} \]

input
int((d*f + e*f*x)^4/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x)
 
output
atan(((-(9*(b^15*f^8 + f^8*(-(4*a*c - b^2)^15)^(1/2) - 81920*a^7*b*c^7*f^8 
 - 560*a^2*b^11*c^2*f^8 + 4160*a^3*b^9*c^3*f^8 - 11520*a^4*b^7*c^4*f^8 - 1 
024*a^5*b^5*c^5*f^8 + 61440*a^6*b^3*c^6*f^8 + 20*a*b^13*c*f^8))/(512*(a*b^ 
20*e^2 + 1048576*a^11*c^10*e^2 - 40*a^2*b^18*c*e^2 + 720*a^3*b^16*c^2*e^2 
- 7680*a^4*b^14*c^3*e^2 + 53760*a^5*b^12*c^4*e^2 - 258048*a^6*b^10*c^5*e^2 
 + 860160*a^7*b^8*c^6*e^2 - 1966080*a^8*b^6*c^7*e^2 + 2949120*a^9*b^4*c^8* 
e^2 - 2621440*a^10*b^2*c^9*e^2)))^(1/2)*((((1024*b^15*c^2*d*e^13 - 28672*a 
*b^13*c^3*d*e^13 - 16777216*a^7*b*c^9*d*e^13 + 344064*a^2*b^11*c^4*d*e^13 
- 2293760*a^3*b^9*c^5*d*e^13 + 9175040*a^4*b^7*c^6*d*e^13 - 22020096*a^5*b 
^5*c^7*d*e^13 + 29360128*a^6*b^3*c^8*d*e^13)/(128*(b^12 + 4096*a^6*c^6 + 2 
40*a^2*b^8*c^2 - 1280*a^3*b^6*c^3 + 3840*a^4*b^4*c^4 - 6144*a^5*b^2*c^5 - 
24*a*b^10*c)) + (x*(128*b^11*c^2*e^14 - 2560*a*b^9*c^3*e^14 - 131072*a^5*b 
*c^7*e^14 + 20480*a^2*b^7*c^4*e^14 - 81920*a^3*b^5*c^5*e^14 + 163840*a^4*b 
^3*c^6*e^14))/(16*(b^8 + 256*a^4*c^4 + 96*a^2*b^4*c^2 - 256*a^3*b^2*c^3 - 
16*a*b^6*c)))*(-(9*(b^15*f^8 + f^8*(-(4*a*c - b^2)^15)^(1/2) - 81920*a^7*b 
*c^7*f^8 - 560*a^2*b^11*c^2*f^8 + 4160*a^3*b^9*c^3*f^8 - 11520*a^4*b^7*c^4 
*f^8 - 1024*a^5*b^5*c^5*f^8 + 61440*a^6*b^3*c^6*f^8 + 20*a*b^13*c*f^8))/(5 
12*(a*b^20*e^2 + 1048576*a^11*c^10*e^2 - 40*a^2*b^18*c*e^2 + 720*a^3*b^16* 
c^2*e^2 - 7680*a^4*b^14*c^3*e^2 + 53760*a^5*b^12*c^4*e^2 - 258048*a^6*b^10 
*c^5*e^2 + 860160*a^7*b^8*c^6*e^2 - 1966080*a^8*b^6*c^7*e^2 + 2949120*a...